Answer:
Option D
Explanation:
In case of pure rolling, mechanical energy remains constant (as work-done by friction is zero) . Further in case of a disc.
translational kinetic energy/ rotational kinetic energy = $\frac{K_{T}}{K_{R}}$
$=\frac{\frac{1}{2}mv^{2}}{\frac{1}{2}I\omega^{2}}$
=$\frac{mv^{2}}{\left(\frac{1}{2}mR^{2}\right)\left(\frac{V}{R}\right)^{2}}=\frac{2}{1}$
or $K_{r}=\frac{2}{3}$ ( Total kinetic energy)
or Total Kinetic energy
$K=\frac{3}{2}K_{r}=\frac{3}{2}\left(\frac{1}{2}mv^{2}\right)=\frac{3}{4}mv^{2}$
Decrease in potential energy = increase in kinetic energy
or $mgh=\frac{3}{4}m\left(v_{f}^{2}-v_i^2\right)$
or $v_{f}=\sqrt{\frac{4}{3}gh+v_{i}^{2}}$
As final velocity in both cases is same
So, value of $\sqrt{\frac{4}{3}gh+v_{i}^{2}}$ should be same in both cases.
$\therefore$ $\sqrt{\frac{4}{3}\times10\times 30+(3)^{2}}=\sqrt{\frac{4}{3}\times10\times 27+(v_{2})^{2}}$
$v_{2}=7 m/s$